3:19
GRSS 000 introduction
Trin Tragula General Relativity
7:16
GRSS 001 total derivative
7:32
GRSS 002 Jacobian part one
13:35
GRSS 003 Jacobian part two
5:48
GRSS 004 curvilinear cooordinates
6:10
GRSS 005 curvilinear Jacobian
18:32
GRSS 006 coordinate bases
7:12
GRSS 007 basis vectors general coordinates
11:34
GRSS 008 gradient transforms like coordinates bases
4:45
GRSS 009 contravariant vector components
8:57
GRSS 010 contravariant transformations
6:48
GRSS 011 covariant and contravariant transforms
10:58
GRSS 012 covariant vector example
5:14
GRSS 012a summation convention
11:37
GRSS 013 contravariant transformation example
20:39
GRSS 014 inner product is invariant also kronecker delta
7:43
GRSS 015 intro to metric tensor
2:44
GRSS 016 metric tensor part two
5:56
GRSS 017 metric tensor part three
9:11
GRSS 018 metric tensor part four
4:21
GRSS 019 lowering an index with the metric tensor
10:26
GRSS 020 transforming the metric tensor
8:26
GRSS 021 definition of a tensor
4:19
GRSS 022 products of vectors are tensors
6:55
GRSS 023 Kronecker delta is a tensor
8:11
GRSS 024 covariant vector basis omega part one
13:26
GRSS 025 covariant vector basis part two
2:26
GRSS 026 covariant vector basis part three
8:18
GRSS 027 raising and lowering indices
26:54
GRSS027 raising and lowering indices (replacement)
5:33
GRSS 028 evaluating the contravariant metric tensor in h theta space
10:17
GRSS 029 derivative of a constant vector is nonzero
11:19
GRSS 030 transformation law for the derivative of a vector
7:55
GRSS 031 derivation of christoffel symbol part one
13:10
GRSS 032 derivation of christoffel symbol part two
GRSS 033 using the christoffel symbol
10:42
GRSS 034 covariant differentiation of a covariant vector
6:34
GRSS 035 covariant derivative of a second rank tensor
4:57
GRSS 036 covariant vector basis part three
3:54
GRSS 037 contraction of Christoffel symbol part one
18:48
GRSS 038 contraction of Christoffel symbol part two best version
14:39
GRSS 039 calculating Christoffel symbols example
13:34
GRSS 040 divergence of a contravariant vector field using Christoffel symbols part one
5:45
GRSS 041 divergence of a contravariant vector field using Christoffel symbols part two
13:54
GRSS 042 divergence of a contravariant vector field using Christoffel symbols part three
6:24
GRSS 043 divergence of a contravariant vector field using Christoffel symbols part four
8:51
GRSS 044 path integration of a scalar path independence
3:55
GRSS 045 conservative vector fields
10:15
GRSS 046 intrinsic derivative of a contravariant vector along a curve
7:19
GRSS 047 path dependence of parallel transport on a sphere
GRSS 048 geodesic equation part one
4:30
GRSS 049 geodesic equation part two
4:29
GRSS 050 geodesic using calculus of variations part one
17:53
GRSS 051 geodesic using calculus of variations part two
GRSS 052 Christoffel symbols for polar coordinates
GRSS 053 solving the geodesic equation in polar coordinates part one
7:18
GRSS 054 solving the geodesic equations in polar coordinates part two
9:39
GRSS 055 Riemann curvature tensor part one
12:44
GRSS 056 Riemann curvature tensor part two
9:21
GRSS 057 Riemann curvature tensor part three
GRSS 058 Riemann curvature tensor part four
7:30
GRSS 059 conventions for the riemann tensor placing of indices and individual index transformation
14:59
GRSS 060 Riemann curvature tensor with four covariant indices
9:16
GRSS 061 coordinate systems part one
6:03
GRSS 062 coordinate systems in flat space
5:27
GRSS 063 coordinate systems part three
3:27
GRSS 064 light cones
7:00
GRSS 065 Lorentz transform part one
4:09
GRSS 066 Lorentz transform part two
2:38
GRSS 067 Lorentz transform part three
6:18
GRSS 068 Lorentz transform part four
6:25
GRSS 069 Lorentz transform part five
12:13
GRSS 070 Lorentz transform part six
4:39
GRSS 071 Lorentz transform part seven
7:07
GRSS 072 Lorentz transform part eight
8:30
GRSS 073 Lorentz transform part nine
7:14
GRSS 074 Lorentz transform part ten
5:31
GRSS 075 Lorentz transform part eleven
7:22
GRSS 076 Lorentz transform CONCLUSION
5:11
GRSS 077 Lorentz transforms of contravariant vectors
4:16
GRSS 078 Lorentz transforms of covariant vectors
GRSS 079 four velocity part one
3:45
GRSS 080 four velocity part two
2:23
GRSS 081 four velocity part three
5:51
GRSS 082 four velocity part four
3:18
GRSS 083 four velocity part five
GRSS 084 dot product of two four vectors is frame independent
3:00
GRSS 085 four momentum
2:47
GRSS 086 E equals m c squared
GRSS 087 four momentum is a conserved quantity
8:05
GRSS 088 rest mass of a photon is zero
7:59
GRSS 089 number flux vector part one
5:53
GRSS 090 number flux vector part two
7:36
GRSS 091 number flux vector part three
10:33
GRSS 092 number flux vector part four
11:01
GRSS 093 stress energy tensor part one
9:13
GRSS 094 stress energy tensor part two
10:29
GRSS 095 stress energy tensor part three
6:37
GRSS 096 stress energy tensor part four
6:06
GRSS 097 stress energy tensor part five