58:58
Lecture 1: Introduction to Deep Learning for Computer Vision (UMich EECS 498-007)
whollyholic
1:06:50
Lecture 2: Image Classification (UMich EECS 498-007)
1:05:22
Lecture 3: Linear Classifiers (UMich EECS 498-007)
1:09:08
Lecture 4: Optimization (UMich EECS 498-007)
1:05:35
Lecture 5: Neural Networks (UMich EECS 498-007)
1:12:46
Lecture 6 Backpropagation (UMich EECS 498-007)
1:11:06
Lecture 7: Convolutional Networks (UMich EECS 498-007)
1:13:59
Lecture 8: CNN Architectures (UMich EECS 498-007)
1:14:36
Lecture 9: Hardware and Software (UMich EECS 498-007)
1:16:24
Lecture 10: Training Neural Networks Part 1 (UMich EECS 498-007)
1:22:11
Lecture 11: Training Neural Networks Part 2 (UMich EECS 498-007)
1:16:27
Lecture 12: Recurrent Neural Networks (UMich EECS 498-007)
1:17:07
Lecture 13: Attention (UMich EECS 498-007)
1:09:19
Guest Lecture: Adversarial Machine Learning (UMich EECS 498-007)
1:13:25
Lecture 14: Visualizing and Understanding (UMich EECS 498-007)
1:13:36
Lecture 15: Object Detection (UMich EECS 498-007)
1:11:30
Lecture 16: Detection and Segmentation (UMich EECS 498-007)
1:15:01
Lecture 17: 3D Vision (UMich EECS 498-007)
1:16:26
Lecture 18: Videos (UMich EECS 498-007)
1:14:41
Lecture 19: Generative Models Part 1 (UMich EECS 498-007)
1:16:04
Lecture 20: Generative Models Part 2 (UMich EECS 498-007)
1:13:42
Lecture 21: Reinforcement Learning (UMich EECS 498-007)
1:13:51
Lecture 22: Recap & Open Problems (UMich EECS 498-007)