12:34
1.01 Winding numbers and the fundamental theorem of algebra
Jonathan Evans
14:52
1.02 Paths, loops, homotopies
17:09
1.03 Concatenation and the fundamental group
21:22
1.04 Examples and simply-connectedness
13:00
1.05 Basepoint dependence
14:43
1.06 Fundamental theorem of algebra: reprise
7:33
1.07 Induced maps
19:32
1.08 Brouwer's fixed point theorem
20:54
1.09 Homotopy equivalence
11:21
1.10 Homotopy invariance
16:43
2.01 Topological spaces, continuous maps
19:47
2.02 Bases, metric and product topologies
19:06
2.03 Subspace topology
18:57
2.04 Connectedness, path-connectedness
16:44
2.05 Compactness
14:51
2.06 Hausdorffness
15:12
2.07 Homeomorphisms
21:17
3.01 Quotient topology
10:44
3.02 Quotient topology: continuous maps
22:12
3.03 Quotient topology: group actions
20:13
4.01 CW complexes
14:29
4.02 The homotopy extension property
18:42
4.03 CW complexes and the HEP
19:14
5.01 Van Kampen's theorem: statement and examples
15:10
5.02 Fundamental group of a CW complex
17:44
5.03 Fundamental group of a mapping torus
41:37
5.04 Proof of Van Kampen's theorem
17:43
6.01 Braid group
12:27
6.02 Artin action
13:25
6.03 Wirtinger presentation
27:42
7.01 Covering spaces
19:30
7.02 Path-lifting, monodromy
15:45
7.03 Path-lifting: uniqueness
22:16
7.04 Homotopy lifting, monodromy
20:38
7.05 Fundamental group of the circle
23:37
7.06 Group actions and covering spaces, 1
22:01
7.07 Group actions and covering spaces, 2
24:57
8.01 Lifting criterion
26:06
8.02 Covering transformations
25:26
8.03 Normal covering spaces
15:17
8.04 Deck group
16:03
8.05 Galois correspondence for covering spaces 1. Covers from subgroups
20:16
8.06 Galois correspondence for covering spaces 2. Summary and examples