1:17:23
EAS205, 2014, Lecture 1: Introduction, dot product
Ladislav Kavan
1:16:37
EAS205, 2014, Lecture 2: Cauchy-Schwarz, Vector Spaces
1:10:22
EAS205, 2014, Lecture 3: Linear Transformations and Matrices
1:18:40
EAS205, 2014, Lecture 4: Coordinate Transformations
1:11:34
EAS205, 2014, Lecture 5: Affine space, affine transformations
1:13:29
EAS205, 2014, Lecture 6: Solving linear systems
1:15:38
EAS205, 2014, Lecture 7: Examples of linear systems
1:12:17
EAS205, 2014, Lecture 8: Examples of linear systems
1:12:24
EAS205, 2014, Lecture 9: Elementary Group Theory
1:12:45
EAS205, 2014, Lecture 10: Solving rectangular systems of linear equations
1:13:57
EAS205, 2014, Lecture 11: Vector subspaces
1:13:28
EAS205, 2014, Lecutre 12: Four fundamental subspaces
1:14:58
EAS205, 2014, Lecture 13: Transform coding
1:13:49
EAS205, 2014, Lecture 14: Least squares
1:11:18
EAS205, 2014, Lecture 15: Gram-Schmidt process, DCT and midterm recap
1:15:29
EAS205, 2014, Lecture 16: Determinat
1:15:26
EAS205, 2014, Lecture 18: Eigenvalues & eigenvectors
1:16:24
EAS205, 2014, Lecture 19: Markov matrices, linear differential equations
1:11:26
EAS205, 2014, Lecture 20: Ordinary differential equations
1:02:52
EAS205, 2014, Lecture 21: Symmetric matrices
1:11:29
EAS205, 2014, Lecture 17: Determinant, Eigenvalues & Eigenvectors
1:18:19
EAS205, 2014, Lecture 22: Applications of symmetric matrices
1:16:09
EAS205, Lecture 23: PageRank, SVD
1:17:48
EAS205, 2014, Lecture 24: SVD
1:19:15
EAS205, 2014, Lecture 25: SVD and its applications